Wind Energy Maps & Services

at Saint Francis University

  • PA Wind Resource Assessment Header

    Looking to develop a wind project?

    Well then, you've come to the right place!  On this page:

    Assess Your Resource Wind Resource Assessment Button State and County Wind Maps

    Lean About Our On-Site StudiesWind Resource Assessment Button On-Site Wind Asssessment

    Find Answers to Your QuestionsWind Resource Assessment Button FAQs and Resources

  • Assess Your Wind Energy Resource

    Contact Us

    Questions? Let us know.
    Email: energy@francis.edu 

    Understanding your wind energy resource is critical to developing a successful project. Use our wind maps to help characterize your resource.

    • Typically, a 10 mph (4.5 m/s) or greater annual average wind speed is needed to make a small wind turbine financially feasible. Utility scale wind turbines are typically placed in 14.5+ mph (6.5+ m/s) wind speeds.
      • If you find that your site has a feasible resource, see our FAQs below, to learn about other important factors that you will need to consider. 
      • If you find that wind is not suitable at your location, do not fret. See starting a renewable project for alternatives! 

    The best wind speeds are high off the ground and away from obstructions and are usually found on ridgelines and near Lake Erie, in PA. 

    Pennsylvania Wind Explorer

    Analyze wind characteristics across PA with our interactive explorer
    Easily find average annual wind speeds and other statistics!  
    • Data at 30 m is available for free with a free account (average height of small wind turbines).  
    • Data from 10 to 100 meters is available with a subscription. 
     

    Wind Explorer Support

    Support -
    Email renewable@francis.edu or call 814-472-2872. 

    If we are unable to answer your question(s), we will consult with AWS Truepower to provide a response.

    Getting Started - 

    • To access the wind map, please create an account. 
    • Your email will be your username. 
    • Once your account has been created, log-in to the program. 
    • You can click anywhere on the colored map (anywhere in PA) to place a pin. Data from that location will then show in the compass on the right-hand side of the page. 
    • Zoom in to better pinpoint a specific location. 
    • Satellite view will allow you to zoom in further than terrain view (the colored map will disappear, but data will still be available). 
    • If you would like a printable report, click "get report." You can choose from a Free Compass Report or a Standard Report (set as default) by selecting the one of the round buttons at the top of the window.  

    About the Program -
    AWS Truepower, a company based in Albany, NY, developed the program for the Institute. The organization designed and maintains the program and owns the data in the program. For more information, see the support page and FAQs.

    User Feedback - Let Us Know Your Thoughts

    Have comments about the program? We appreciate your feedback.

     PA Wind Explorer Screenshot
    Site created and maintained by AWS Truepower 
    Made possible through
    The Reinvestment Fund's Sustainable Development Fund 
  • PA County Wind Maps

    About
     Pennsylvania Wind Map ExampleBrowse our wind maps in the tabs above.  Click an 'X' to view the map image.
    • For small projects, the 30 m data, along with a site visit by an installer, may be all you need to determine if a project is feasible.
    • For large projects, the 50 and 100 m maps can help indicate if the wind speeds are strong enough to conduct an onsite analysis.  

    Also see our statewide wind maps with county outlines

    See below to learn more about wind energy and the services offered by the IFE.

    FAQ's
    The questions listed on this section relate to the wind maps posted on this page.  See here for questions regarding the Wind Explorer, which is operated and maintained by AWS Truepower

    What do the maps show?

    The wind maps depict the annual average wind speed at a given height and location.  Wind speeds vary throughout the day and throughout the year, so the maps provide a summary that can help you determine whether it is worth pursuing further analysis at your site.

    Wind projects in areas with low wind speeds are typically not profitable. This does not mean they are impossible, but it does mean your motivation must be more than financial for the project to be worthwhile. 

    30 Meter Wind Maps (98.4 feet)
    No Color -  [< 4.5 m/s] [ < 10.1 mph]  - Wind Speeds are Too Low to Recommend the Installation of a Wind Turbine
    Tan -  [4.5 - 5.5 m/s] [10.1 - 12.3 mph]  - Wind Speeds May Be Suitable for a Small Wind Turbine
    Orange -  [5.5 - 6.5 m/s] [12.3 - 14.5 mph]  - Wind Speeds are Typically Suitable for a Small Wind Turbine 
    Blue -  [6.5 + m/s] [14.5 + mph]  - Wind Speeds are Optimal for a Small Wind Turbine

    50 Meter Wind Maps (164.0 feet)
    No Color -  [< 5.6 m/s] [ < 12.6 mph]  - Wind Speeds are Too Low to Recommend the Installation of a Wind Turbine
    Orange - [5.6 -6.4 m/s] [12.5 - 14.3 mph] - Wind Speeds May Be Feasible for a Small or Medium Sized Turbine
    Blue - [6.4 + m/s] [14.3+ mph] - Wind Speeds are Optimal for a Wind Turbine

    100 Meter Wind Maps (328.1 feet)
    No Color -  [< 5.6 m/s] [ < 12.6 mph]  - Wind Speeds are Too Low to Recommend the Installation of a Wind Turbine
    Orange - [5.5 - 6.5 m/s] [12.3 - 14.5 mph] - Wind Speeds May Be Feasible for a Utility Scale Wind Turbine
    Blue - [6.5 + m/s] [14.5 + mph] - Wind Speeds are at or Near Optimal for a Utility Scale Wind Turbine

    Why is it important to know what the wind speed is at your location?

    Wind speed is a critical feature of the wind resource, because the available energy in the wind is proportional to the cube of the wind speed. This means that by doubling the wind speed we do not double the power in the wind, but get eight times the power. So, a site with an average wind speed of 15 mph has the potential to contain eight times the energy of a site with an average wind speed of 7.5 mph. This means that the location of the turbine, on your property and in terms of height, is absolutely essential to getting the most power out of your system.

    How were the maps made?

    The maps were created using DeLorme XMap GIS Editor or Esri ArcMap software and wind data originally generated for Pennsylvania (50 m) or the IFE (30 m, 100 m) by AWS Truepower, an engineering and meteorological consulting firm based in Albany, New York.

    Why is the map scale different for each height?

    The 50m map data was provided to the IFE previously. It depicts wind speeds by wind power class (Class 2 = 12.5 to 14.3 and class 3 = 14.3 and above). In 2013, the IFE received a grant to purchase 30 and 100 m map data. This data was presented by wind speed instead of class. The IFE has worked to depict the two different scale versions as similarly as possible. 

    While the 50 and 100 m maps only show blue and orange layers, at 30m, the IFE has introduced a coloring scheme at 10.1-12.3 mph, as few locations exhibit annual average wind speeds exceeding that range.

    Where can I learn more about wind energy and developing my own project?

    See more on the page below as well as our starting a project page.

    The maps are made possible thanks to the generous support of The Reinvestment Fund's Sustainable Development Fund. 
    Adams - Centre

    Note: All wind mapping is an approximated value calculated through complex formulas and correlations. As each site is unique,we highly recommend having an installer visit your site to make a proper assessment before you further pursue a project.
    Chester - Fulton

    Note: All wind mapping is an approximated value calculated through complex formulas and correlations. As each site is unique,we highly recommend having an installer visit your site to make a proper assessment before you further pursue a project.
    Greene - Mercer

    Note: All wind mapping is an approximated value calculated through complex formulas and correlations. As each site is unique,we highly recommend having an installer visit your site to make a proper assessment before you further pursue a project.
    Mifflin - Susquehanna

    Note: All wind mapping is an approximated value calculated through complex formulas and correlations. As each site is unique,we highly recommend having an installer visit your site to make a proper assessment before you further pursue a project.
    Tioga - York

    Note: All wind mapping is an approximated value calculated through complex formulas and correlations. As each site is unique,we highly recommend having an installer visit your site to make a proper assessment before you further pursue a project.
  • Wind Resource Assessment Program

    Interested in Our Program?

    Submit your information to receive a preliminary site assessment.
    Name: 
    Email: 
    Phone: 
    Location of Potential Project: 
     
    Why Are You Interested in Wind?

    PA Anemometer Loan ProgramThe Institute for Energy runs the Wind Resource Assessment Program (WRAP), which includes Pennsylvania's only anemometer loan program.  This wind assessment service allows landowners to learn if their site has commercial wind potential. If our pre-feasibility analysis indicates there is utility scale wind potential at the site, the landowner will qualify to rent our equipment.  Wind speeds vary throughout the course of the year, so studies typically measure the resource for a minimum of 12 months.

    Sodar Unit

    Our Equipment
    We have 60 meter tall NRG Now System XHD meteorological (met) towers available to loan. Each tower is equipped with anemometers (for measuring wind speed),wind vanes (for measuring direction) and a temperature sensor. We also have a Second Wind by Vaisala's Triton sodar unit, which measures wind speed and other data through sound waves.  

    Learn about current pricing and equipment availability by contacting IFE staff through the form at right, via email: renewable@francis.edu, or by calling: 814-472-2872.

    Discover more about our program and wind energy in the sections below.

  •   

    Data We Have Collected

     Wind Data Collection Collage

    Data Collected

    There has been an incredible amount of interest in the Community Wind Project since its establishment by the Pennsylvania Department of Environmental Protection in 2005. We've received over 600 applications from nearly every county in Pennsylvania. We have had 12 wind assessment projects in 7 counties and each site has collected a full 12 months of data.  See the map below. We know this data is valuable both for project development on-site and also for validation and correlation purposes for other wind projects in the region - and for other research purposes. Contact us for information on our data and how to obtain it. 

     Met Tower Locations

     Community Wind Project Assessment Site Data

    Location  Average Wind Speed at 50 m
    Wind Power Class (1 to 7)
    1) Rockwood, Somerset County 10.80 mph (1)
    2) Boswell, Somerset County 10.20 mph (1)
    3) Portage, Cambria County 10.20 mph (1)
    4) Ebensburg, Cambria County 13.87 mph (2)  
    5) Patton, Cambria County 15.30 mph (3)
    6) Greenfield Township, Erie County 12.70 mph (2)
    7) Garret, Somerset County 12.1 mph (1)
    8) Blue Knob, Blair County     11.95 mph (1)
    9) Palmerton, Carbon County 15.72 mph (3)
    10) Freeland, Luzerne County 13.28 mph (2)
    11) Chambersburg, Franklin County 16.04 mph (3)
    12 )Mercersburg, Franklin County 14.3 mph (3)

     

    An Example Project - Patton Wind Farm

     

    Wind Farm Construction Collage

    Example Project - Patton Wind Farm

    In 2006, the Renewable Energy Center began data collection at a site in northern Cambria County, near the borough of Patton, PA. Learn how this assessment led to the development of a 15 turbine wind farm.

    Patton Met Tower Installation Patton Wind Farm Wind Classes Site Map

     

    Patton Wind Farm

    30 MW Generating Capacity
    15 2.0 MW Gamesa Wind Turbines  
    Completion Date: December 2012
    Owner: EverPower Wind Holdings, LLC

    In September of 2005, the REC received an application to measure the wind resource in agricultural land to the north and west of Patton.  A review of our wind maps indicated the potential for class 3 wind speeds (14.3 - 15.7 mph [in blue]) at 50 meters above the surface, enough to support utility scale wind turbines.  After permits were approved and reviews completed, a 50 meter NRG meteorological tower was installed at an elevation of 2,220 feet (near the blue area on the above wind map - in orange above the 'ed' in Saint Benedict).  The tower was placed in an open field away from obstructions.  Pictured above is a view from the base of the tower looking north (the lines to the right are guy wires helping to support the tower).  The tower collected data beginning in June of 2006 and continued to do so until collection ended in March 2008.  The tower was removed in April 2008.    

     

     Patton Wind Farm Wind Speed and Diurnal Curves

    To have a thorough understanding of the wind resource at a location, it is best to collect at least one year's worth of data.  In chart one, average wind speed, notice that wind speeds are stronger during winter months than they are during mid to late summer.  In the second chart, diurnal wind speed,  notice that wind speeds are slightly stronger during nighttime hours.  Below, the third chart, wind direction frequency, shows that the wind comes predominately from the west and southwest at this site.  The fourth chart shows that wind speeds of 10 to 14 m.p.h. were the most commonly occurring during the period of June 2006 - September 2007. 

    Patton Wind Farm Wind Direction and Wind Speed Frequencies

    With an average annual wind speed of 15.3 mph measured at the site, the center moved forward with a request for proposals to potentially install a wind farm at the site.  Tasks to development included 1) permitting (including environmental and interconnection to the grid), 2) public review, 3) securing a power purchase agreement, 4) securing financing, 5) equipment procurement, 6) construction contracts, 7) construction, 8) maintenance contracts.  Through a competitive process, OwnEnergy, Inc. was selected to move forward with the project.  The developer worked with local farmers Marty and Rick Yahner to gain the support of landowners and determine where the turbines would be placed.  

    EverPower Wind Holdings, Inc. purchased the project from OwnEnergy in late 2011.  The wind farm was in operation at the end of 2012 (see photo gallery below and visit our Facebook Page for more).  Photos courtesy of Marty Yahner.  
    Learn more about OwnEnergy's and EverPower's roles in this project at their respective websites and see more photos.

    Patton Wind Farm Construction Photos 1


     Patton Wind Farm Construction Photos 2

    Patton Wind Farm Construction Photos 3

    Patton Wind Farm Construction Photos 4

     

  • Wind Energy FAQ's & Resources

    Have a question?  Find the answer here.  Don't see your question?  Let us know. 

    Starting Your Own Project

    Do I have enough wind?

    In Pennsylvania, wind resource is strongly related to elevation, so the higher you are in elevation the better the wind resource. Generally properties with 1,500 - 2,000+ of elevation are best suited for wind energy. You can put a wind turbine just about anywhere and it will generate electricity. . .the question is how much and if the result satisfies your financial goals and other desired results.Your annual average wind speed should be at least 10 - 12 miles per hour. To help assess your wind resource, see our wind maps.

    How much will it cost?

    A residential wind system can cost as little as $3,000 for a very small turbine or over $50,000 for a system that can fully power your home. Typical installed costs can range from $15,000 - $20,000 for a 1.8 kilowatt turbine to $50,000 - $60,000 for a 10 kilowatt turbine that can power your home. Bear in mind that you do get what you pay for, therefore an inexpensive turbine will not produce significant amounts of electricity. The amount of power you get depends on your resource. Elements of an installed system include the cost of the turbine, the cost of the tower, and the cost of the installation. Do not skimp on the tower height as the taller the tower, the better the resource and the more electricity you will produce.

    Most of the commercial-scale turbines installed in Pennsylvania are 1.5 to 2.5 MW in size and cost roughly $3 to 5 million to purchase, construct and install.  How a project will be financed, owned, and operated can be just as critical to success as wind resource.  Contact us for guidance.

    How much will it save?

    How much money you save depends on how much electricity you produce and what your cost of electricity is. You wouldn’t fill a bucket with water if the bucket were full of holes. Before you invest in a renewable energy system, you should make your home or business as efficient as possible.  Efficiency means getting the same benefit with less electricity. For example a laptop computer uses less than half of the electricity as a desktop computer. A compact fluorescent light bulb uses 75% less energy than an incandescent bulb.  Conservation refers to your actions, what we call the COPs - cheap, obvious, and profitable: turning things off when not in use unplugging devices that use energy even when they are not on lowering your thermostat and water heater when you’re not around. These changes alone can save you 10% - 20% on your energy bills—around $300 dollars a year! The experts at Homepower Magazine claim that every dollar spent on efficiency and conservation will save you three to five dollars on your solar, wind or hydro system. So if you spend $200 to do an extreme green makeover of your home or business—that’s $1,000 you saved on your renewable energy system (because now it does not have to be as large since your energy demand decreased).

    What is the process?

    1. Determine Resource  
    2. Wind Map Analysis
    3. Installer Site Visit
           Met Tower Installation (commercial wind projects only)
    4. Investment Analysis
    5. Permitting
    6. Power Purchase Agreement
    7. Financing
    8. Turbine Procurement
    9. Construction
    10. Operations and Maintenance

    Can I connect my system to the grid?

    Beginning in the mid-2000s, investor-owned utilities in Pennsylvania were required to begin accepting electricity generated by individual consumers.  Alternative Energy Credits may also be available.  Before beginning a project, be it wind or otherwise, be sure to inform your utility so that you can plan accordingly for any requirements you may need to meet in order to connect your system to the grid. 
    Learn more: DSIRE: Net Metering
                           Alternative Energy Portfolio Standards

    How do I choose an installer?

    Visit our PA Business Directory for tips on this.  It is recommended that you compare multiple companies before you make a decision.  Make sure to base your decision on equal offerings (for example: the same style of turbine at the same height, etc.).

    Are there financial incentives? Where can I find them?

    See our starting a renewable energy project page for financial resources.  If you are looking to develop a community scale project, ask about our financing tool.

    How much land do I need?

    Generally speaking, for a small wind turbine, you need at least a 1/2 acre of open land where you can mount the turbine on a tower (though this depends on local zoning and regulations).  

    Larger turbines will need between one and several acres of open land during installation.  Once complete, the space requirement will typically shrink, allowing activities such as farming to occur around the turbine.  A wind farm, consisting of many wind turbines, may span hundreds or thousands of acres.

    What size turbine do I need?

    A typical home uses approximately 9400 kilowatt-hours (kWh) of electricity a year.The size of your turbine depends on your resource, your energy consumption, and how much power you want to produce. Invest in energy efficiency first and never skimp on the height of the tower.

    How do I choose a turbine model?

    The amount of electricity you want to produce and space requirements are just a few of many factors that should factor into finding the optimal turbine for your site.

    The Small Wind Certification Council has established criteria to test small wind turbines in a standardized form and then report the results on an "apples-to-apples" basis. Annual energy, sound, and power ratings are provided for each certified model. 

     Whether enrolled in the SWCC or not, it is important to conduct a thorough review of each turbine and manufacturer you are considering before making a decision, as the small wind industry continues to change and evolve.

    Links: HomePower: Is Wind Electricity Right for You?
                Mother Earth News: Wind Power: Are Vertical Axis Turbines Better? 

    Do I need a permit?

    This varies by township. Contact your local township office and ask if your township has a residential and/or utility wind ordinance.  See an example PA Model Ordinance. Also see a catalog of wind energy ordinances from across the country. If no ordinance is established, DOE has developed a Wind Energy Guide for County Commissioners.  

    Does a turbine need maintenance?

    An annual or bi-annual inspection is usually recommended for small wind turbines.  Check your instruction manual for a maintenance schedule and guidelines.  It is important to monitor the health of your wind turbine on a continual basis.  If you hear or see something abnormal, it is important to address the problem to limit damage to your machine.   Remember to use extreme caution around the turbine and to leave tasks such as climbing and electrical work to professionals.    

    Utility scale wind turbines require maintenance on a regular basis.  Wind farms typically have a dedicated staff to complete this task.   

    Wind Turbines & Their Environs

    Does a wind turbine affect the value of nearby property?

    Studies on this issue in the U.S. have generally found that there is very little, if any, change in the value of a property near a wind turbine, such as an August 2013 publication by the Ernest Orlando Lawrence Berkeley National Laboratory, which studied over 50,000 home sales in nine states where turbines were within 10 miles of the property.  Also see this paper for a summary of previous studies.     

    What impact does the installation of a wind turbine have on the environment?

    Wind turbines, like all electricity sources, can have both positive and negative impacts on the environment. On the positive side, wind turbines emit no pollution, generate no waste, require no mining for fuel, and use negligible amounts of water. They have a small footprint and the land around them can still be used for farming or forests. On the negative side, turbines and their access roads can fragment habitat. Unless carefully constructed and maintained, the roads can lead to erosion. The turbines must be properly sited to avoid avian migratory paths and bats. Turbines are also sometimes noted for producing noise and causing a shadow flicker. Some people enjoy seeing wind turbines, viewing them as kinetic sculpture and some find them aesthetically unpleasing.
    Learn more: Environmental Impacts and Siting of Wind Projects  

    The U.S. Fish and Wildlife Service has established voluntary land-based wind energy guidelines for wind energy projects. The Guidelines use a 'tiered approach' for assessing potential adverse effects to species of concern and their habitats," according to the guideline's executive summary. The guidelines provide an outline for understanding the characteristics of a site and monitoring the area before, during, and after construction of a wind farm. See the US. Fish and Wildlife Service's webpage for information about interactions between wind and wildlife. The Pennsylvania Game Commission has developed a Wind Energy Voluntary Cooperative Agreement with wind developers. They try to monitor, understand, and reduce impacts of the development of wind in the commonwealth. Information related to the agreement and reports are available at the PGC's website.

    Pennsylvania Natural Heritage Program provides"information on the location and status of important ecological resources." The program's website includes a county inventory interactive map and an environmental review tool. 

    Can a wind turbine be placed near an airport?

    Before a wind turbine can be installed, an obstruction evaluation/ airport airspace analysis (OE/AAA) may need to be completed by the Federal Aviation Administration.  Structures over 200 feet above ground level and those within close proximity to an airport, among others, must be reviewed.
    Learn more: FAA Wind Turbine FAQs

    Can a wind turbine interfere with radar?

    Wind turbines in close proximity to a radar unit may interfere with an accurate reading.  When the National Weather Service's NEXRAD dopplar radar detects motion (such as rain), it concludes that it is precipitation.  The radar cannot differentiate between precipitation and a wind turbine, so a weather map may appear to have rain at a wind farm when it is actually sunny.  In Pennsylvania you may notice this effect on weather maps in Cambria and Blair Counties.  
    Learn more: How Rotating Wind Turbine Blades Impact The Nexrad Doppler Weather Radar

    Wind Technology

    What is the difference between a windmill and a wind turbine?

    A windmill is a device used to pump water or grind grain.  A wind turbine generates electricity, although these machines are commonly referred to as windmills as well.

    How big is a typical wind turbine?

    Turbine towers can be over 300 feet tall and have blades more than 150 feet long.  This means that when a blade tip reaches it's peak height, it can be 450 feet, or more, in the air.

    How much electricity does a wind turbine produce?

    A small wind turbine may generate enough electricity to power anywhere from a light bulb up to several houses, depending on the size and the speed of the wind.  A utility scale turbine can power hundreds of homes when operating in optimal wind speeds.  For example, EverPower, operator of the Patton Wind Farm in Cambria County, states that the 15 2 MW turbines at the project generate "enough electricity to power approximately 7,000 homes annually."     

    Where does the electricity produced by a wind turbine go?

    The electricity produced by a wind turbine may be used on-site or sent to the grid.  

    In most situations, such as at wind farms, power produced by a turbine is sent to the power grid.  The power grid is a set of electrical transmission and distribution lines that connect electricity generators and consumers.  It works like this: First, the electricity produced from a wind power plant goes to a local substation.  From the substation, the electrons flow to where they are needed.  If there is no demand locally, they continue on down the line.  If you live close to a wind farm, there is a very good chance that the electrons produced from the wind turbines end up in your home.  However, electrons cannot be traced or followed, which makes it very difficult to say for sure what power plant they came from.  If you live in PA, it's likely to be a conglomerate of energy sources, including coal, nuclear, natural gas, and wind energy.  If you see a sign that advertises a home or business is 100% powered by wind energy, they are usually referring to the "Renewable Energy Credits" they purchased and not the physical electrons flowing into their appliances. 

    It is possible to use wind power on-site, however, in order to have power when the wind is not blowing, a user must rely on batteries, have another energy source producing power, or be connected to the grid. 

    Why might a turbine not be spinning?

    A few reasons a  wind turbine might not be spinning is if the wind speed is not strong enough, if maintenance is being performed on the machine, if there is not a need for electricity (this occurs when the turbine could be producing electricity, but the gird does not need it - a process called curtailment), or if it is a migration time for birds or bats and the turbine is in a flyway.

    Wind History & Statistics

    How long have humans used wind power?

    According to the Department of Energy, people may have been using wind power since 5,000 B.C. for sailing.  By 200 B.C., it is believed that windmills were being used to pump water and grind grain.  It allowed people to sail the oceans and explore the world.  In the late 1800s, millions of windmills could be found in the United States pumping water. Even here in Pennsylvania, windmills were a common sight up to the 1920s and 30s and there were nearly a dozen manufacturers producing windmill models at one time or another.  The Rural Electrification Act of 1936 brought electricity to rural places, limiting the use of wind power in mid-century.  Commercial wind farms have developed over the past fifty years and can now produce large amounts of power.

    When was the first wind farm built in Pennsylvania?

    The first wind farm constructed in Pennsylvania was the Green Mountain Wind Energy Center in Garrett, Somerset County.  It began operating in May of 2000, according to PennFuture.    

    How many wind turbines/wind farms are there in Pennsylvania?  Where are they located?

    PennFuture has a list of wind farms on their website.  Pennsylvania exceeded 1,000 MW of installed capacity in 2012.  

    How many wind turbines are there in the United States?

    The American Wind Energy Association maintains a list of wind energy facts, including the number of U.S. wind turbines.

    Links

    Government

    Industry/Non-Profit

    Disclaimer:

    Use of the Renewable Energy Center/Institute for Energy's materials (including wind maps, data, and other content) for anything other than general information is solely at the risk of the user. The Saint Francis University Renewable Energy Center/Institute for Energy and its funders may not be held liable for any loss, damage or other consequence resulting from the use of the maps and/or data contained on this website, our wind explorer, or through other interactions with the REC/IFE.  Remember to take proper safety precautions when pursing any project.